Cantor User Report

Version 2.0

W. C. Athas
C. L. Seitz

Computer Science Department
California Institute of Technology

5232:TR:86

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1997 2. REPORT TYPE 00-01-1997 to 00-01-1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Cantor User Report Version 2.0 £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 70
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Cantor User Report
Version 2.0

W.C. Athas
C.L. Seitz

Computer Science Department
California Institute of Technology
Pasadena, Calif. 91125

Technical Report 5232:TR:86
January, 1987

The research described in this report was sponsored in part by the
Defense Advanced Research Projects Agency, ARPA order number
3771, and monitored by the Office of Naval Research under contract
number N00014-79-C-0597, and in part by grants from Intel Scientific
Computers and Ametek Computer Research Division.

(©California Institute of Technology, 1986

Contents

1 Introduction
1.1 Cantor Objects
1.2 Object Interaction
1.3 What Cantor Does for the Programmer
1.4 What Cantor Doesn’t Do for the Programmer

2 The Structure of Cantor Programs
2.1 Introductory Examples
2.2 Expressing Recursive Functions in Cantor
23 An Example Usinga Vector
2.4 Building Data Structures in Cantor
2.4.1 Stacks
2.4.2 Queues
2.4.3 Vectors

.......................
...................................
..................................
..................................

........................

3 Three Programming Examples
3.1 Generating Prime Numbers by Sieving
3.1.1 Wheel Driven Primes Sieve

......................

3.2 The Eight Queens Problem
3.3 Gaussian Elimination

...............................

4 The Cantor Programming Environment
4.1 Compiling and Code Generation
4.2 Executing Programs on a Sequential Computer
4.3 Executing Programs on a Concurrent Computer
4.4 Program Termination and Timing
4.5 Error Reporting

................

46 External Objects
5 Synopsis

51 Names e

52 DataTypes . . . i . .o v v it it e e

53 Expressions

5.4 Statements (Commands)

5.5 Object Definitions

................................

DO DD et el et

12
17
20
20
22
24
27

31
31
32
36
39
52

57
57
57
58
59
59
60

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

BNF Descriptionfor Cantor 4
Fibonacci Program 13
Fibonacci Program Using Less Objects 13
Fibonacci Function with Look-Up Table 15
Inner Product Program 18
Inner Product with Multiply Object Program 19
Stack Object 21
Queue Object 23
Vector Object Organized as a Linear Linked List 25
Vector Object Organized as a Binary Tree 26
Two-Dimensional Array Object 29
Wheel Driven Prime Sieve 33
Object Graph for Prime’s Sieve 34
Object Count for Wheel Driven Prime Sieve 35
Concurrency Index for Wheel Driven Prime Sieve 35
Demand Driven Prime Sieve 37
Object Count for Demand Driven Prime Sieve 38
Concurrency Index for Demand Driven Prime Sieve 38
Eight Queens Program Organized by Columns 40
Concurrent Eight Queens Program 42
Output Control for Concurrent Eight Queens Program 43
Concurrent Eight Queens Program with Output Control 44
Object Count for Concurrent Eight Queens 46
Concurrency Index for Concurrent Eight Queens 46
Message Load for Concurrent Eight Queens 47
Revised Concurrent Eight Queens Program 49
Object Count for Revised Concurrent Eight Queens 50
Concurrency Index for Revised Concurrent Eight Queens 50
Message Load for Revised Concurrent Eight Queens 51
Matrix Element for Gaussian Elimination Program 53
Gaussian Elimination Program 54
Object Count for Gaussian Elimination (N =64) 56
Concurrency Index for Gaussian Elimination (N =64) 56

ii

Chapter 1

Introduction

Cantor is an object-oriented programming notation for describing concurrent computa-
tions in terms of small concurrent objects. The objects of Cantor are independent com-
puting agents that interact only by message passing. Each object is comprised of a set of
private variables, called the “persistent variables” or “acquaintances”, a message list used
to identify the contents of a message, and a sequence of commands that describes how the
object will react when it receives a new message. All variables used in Cantor programs are
dynamically typed and lexically scoped.

1.1 Cantor Objects

Normally a Cantor object is at rest and remains so until a message arrives for it. The
response of an object to a message is determined by the contents of the message, the current
contents of the persistent variables, and a sequence of procedural statements defining the
fundamental “actions” that an object can perform. These actions include sending new
messages and creating new objects. Other actions that an object can do include evaluating
arithmetic expressions, assignment, and making decisions about what actions to perform
next. An object cannot run indefinitely. After an object finishes processing a message, it
must either ready itself to receive another message or self-destruct.

1.2 Object Interaction

Message passing in Cantor is based upon the sending object possessing a “reference”
to the destination object. The message passing model that Cantor uses is based upon the
model used by Cosmic Kernel [9], namely, messages exhibit arbitrary delay when travelling
from sender to destination. This notion of reference is comparable to the notion of “pointer”
found in programming languages such as C and Pascal, in that both pointer and reference
are a spatial decoupling between the name of an ohject and the instance of the object.
Cosmic Kernel and Cantor expand upon this interpretation by making reference also a
temporal decoupling between the name of an object and its instance. Therefore, sending a
message to an object is not an instantaneous application of the message to the destination
object.

Cantor takes the temporal decoupling one step further by associating the decoupling not
only with message passing, but also with object creation. Thus a reference to an object can
exist and be computed on before the instance of the object exists. However, for an object
to accept a message, the object must be instantiated.

The message passing model of Cantor deviates slightly from the model of Cosmic Kernel
with respect to preservation of message order. In Cosmic Kernel, messages sent between
two objects that are in direct communication will arrive in the same order as they were
sent. Because Cantor objects can become other objects, an object is not necessarily always
stationary in Cantor. The preservation of message order property is contingent upon not
using the become statement.

1.3 What Cantor Does for the Programmer

The task of writing concurrent programs in Cantor focuses upon finding a good concur-
rent formulation for the intended application. The tasks of assigning objects to processing
nodes and managing the delivery of messages to objects is handled jointly by the Cantor
compiler and runtime system. Although the Cantor system manages these resources for the
programmer, the choice of algorithms and programming style influences the performance
of the computation. One of the objectives of this report is to suggest some programming
paradigms that have been found to be useful and efficient. Hopefully many more such
paradigms will be discovered as our experience with Cantor grows.

1.4 What Cantor Doesn’t Do for the Programmer

Data and control structures common to many high-level programming notations are not
fundamental to Cantor. For example, data structures such as arrays, records, queues, and
stacks are not included. These data structures must be built explicitly out of Cantor objects.
With respect to control structures, iteration is not included as one of the basic actions.
Instead, structured programming constructs such as for and while must be programmed
by message passing operations.

Programmers accustomed to the well-known imperative programming languages used
on sequential processors may find programming in Cantor challenging, i.e. difficult, at first.
Data structures are described as compositions of objects and control structures are de-
scribed as sequences of message passing actions. These data and control structures are not
prepackaged as part of Cantor. However, the programmer can accumulate libraries of object
definitions for particular problems.

Cantor bears some kinship to LISP, with the Cantor object replacing the “cons” cell as
the atomic constructor.

Chapter 2

The Structure of Cantor Programs

The purpose of this chapter is to explain the syntax and semantics of Cantor programs.
Our strategy is to introduce the various syntactic constructs both by their BNF descriptions
and with examples of their use. A complete BNF definition for Cantor is given in Figure
2.1. The examples were chosen for their ability to illustrate in simple contexts the various
constructs used in Cantor programs. They were not chosen for their usefulness nor efficiency.

The de luze programming examples in Chapter 3 are more nearly representative of practical
computations.

2.1 Introductory Examples

For these introductory examples, we shall emphasize the overall structure of a Cantor
program, the way in which Cantor objects are defined and instantiated, and some of the
ways in which iteration and recursion can be expressed.

The structure of a Cantor program is reflected in the first three rules of the BNF
specification:

(program) => (object definition)* {description)
(object definition) => (object name) (persistent list) :: (description)
(description) = (*[|[) (body)]

Characters that are in boldface (darker) or words that are underlined denote tokens that
are part of Cantor’s syntax. For example, the asterisk following (object definition) in the
rule for (program) denotes the “Kleene star” as it is used in BNF. The boldface asterisk in
the (description) rule denotes the Kleene star as it is used in Cantor.

To apply these BNF rules, consider this simple but complete Cantor program:

[(console) send (“Hello World") to console]

In time-honored tradition, this first example program prints “Hello World” on the program-
mer’s output device. As shown in the BNF rule for (program), a Cantor program consists
of repeated (object definition)s, including none as in this case, followed by a {(description).

The (description) here is a special object definition called the main object. When a
Cantor program starts executing, the main object is the only object present, and this object
starts to execute only after receiving a message from the runtime system hosting the com-
putation. To understand the meaning of this single line, the BNF rule for {body) needs to
be expanded:

(program)
(object definition)
(description)
(body)
(sequence)
(case)

{case entry)
(statement)
(if)

(let)

(send)
{assign)
(control)
(persistent list)
(message list)
(name list)
{expression)
(exprl)
(expr2)
(expr3)
(expr4)

(primitive)

(selector)
(reference)
(list)
(symbol)
(logical)

{name)

N R 2 o A A

Feeidy

(object definition)* (description)

(object name) (persistent list) : : (description)
(*L| [) (body) 1

(sequence) | (case) | (description)*

(message list) (statement)*

case ((variable name)) of (case entry)*
{selector) : (sequence)

(ify | (let) | (send) | (assign) | (control) | (description)
if (expression) then (statement)® { else (statement)t } fi
let (variable name) = (expression)

send (list) to (expression)

(name) := (expression)

exit | repeat | become (expression)

(name list)

(name list)

O | ({name) { , (name) }*)

(expr1) { (or | xot) (expri) }*

(expr2) { and (expr2) }*

(expr3) { (= | <> | <|>]|<=]|>=) (expr3) }*
(exprd) { (+ | -) (exprd) }*

(primitive) { { * | / | mod) (primitive) }*
(variable name) | (selector) | (reference) | (real) |
abs (primitive) | not (primitive) | ({expression))
(integer) | {logical) | (symbol)

self | (object name) (list)

() | ((expression) { , {expression) }*)

" (char)* ®

true | false

(ident)

Figure 2.1: BNF Description for Cantor

(body) => (sequence) | (case) | (description)*t
(sequence) =—> (message list) (statement)*
(case) = case ((name)) of (casebody)*

The body of an object definition is either a message list followed by a sequence of
zero or more statements, a case construct, or a series of nested descriptions. The case
construct will not be used in these introductory examples. For the main object of the
“Hello World” program, the body is an instance of the (sequence) rule, comprised of a
message list, containing a single component named console, followed by a send statement.

The general interpretation of a (description) is this: Whenever an executing object
encounters an open square bracket, i.e. a new description, execution of the object stops
until a new message arrives for it. Initially an object starts executing at the outermost left
bracket, and is therefore initially waiting for a message. When a message arrives it is copied
into the message list of the body of the description. The object then executes statements
until the outermost close square bracket is encountered, or until another description is
reached.

For the main object, the message list contains references to external objects that are
passed into the Cantor program by the runtime system hosting the program. For the
“Hello World” program, the message from the outside contains a reference to an object
internally named console. A message sent to the reference contained in console will cause
the message contents to be displayed on some output device.

A statement can change the content of an internal variable, alter the control flow within
the object, or cause an external effect by sending a message or creating a new object. The
entire set of possible statements is given by the BNF for a (statement):

(statement) = (if) | (let) | (send) | (assign) | (control) | {description)

All of these types of statements will appear in the examples in this section.

The main object in our example contains only a single statement, a send statement. The
syntax for the send statement is the following:

(send) = send (list) to (expression)
(expression) => ... (primitive) ...

(primitive) = (variable name) | (reference) ...
(reference) = self | (object name) (list)

The meaning of the send statement is to copy the contents of (list) into a message and then
send the message to the object whose reference is the value of (expression).
Lists have the following syntax:

(list) == () | ({expression) { , {expression) }*)

Expressions in Cantor can take on a variety of forms as directed by the precedence
structure of the operators built into Cantor. However, all expressions must evaluate to one

of the five primitive data types that are built into Cantor. The five types of primitive values
are:

e reference, the address of another object.
e integer, e.g. 42.

e real number, e.g. 3.14159265.

e symbol, e.g. “Hello World”.

e logical (Boolean), viz. true or false

All Cantor values are tagged with type information. When the contents of a list are copied
into a message, each expression is evaluated to yield a value, and these values, each tagged
with its type, make up the contents of the message.

For the (send) rule, the destination of the message is denoted by an (expression) that
must evaluate to a reference value. Any other value type is a programming error. For our
first example, here repeated for convenience in reading:

[(console) send (“Hello World") to console]

console must evidently be a reference, “Hello World™ is a literal symbol, and the effect of the
single send statement in the body of the description is to dispatch this message to console.
At the object referred to as console, the message is identified as a list containing one symbol,
and this symbol is printed.

Referring again to the BNF, a reference value can in general be the value associated with
a variable name, e.g. a component of the persistent list for the object or a component of the
message list for the current description, or can be introduced by the rule for (reference).
This rule states that a reference can be produced by the keyword self, which produces a
reference value for the object where the keyword self occurs, or can be manufactured by
composing the name of an object definition with a list. The effect of this composition is to
create a new instance of the object and to “install” the list into the persistent list of the
new object.

In order to illustrate how objects create other objects, let us send the “Hello World”
message followed by a “Goodbye Cruel World” message via a relay object:

relay(destination) :: [(message) send (message) to destination]

[(console)
send ("Hello World") to console
send ("Goodbye Cruel World") to relay(console)

]

The definition of the relay object includes the single persistent variable named destination,
which by its use in the send statement must be a reference. When the main object refers
to relay, it creates an instance of the relay object, initializes its persistent variable with the
value of console, and obtains a reference to the new object. When the message arrives for
the relay object, it is copied into the list (message), and the send statement causes this same
list to be dispatched to the destination that had been “installed” in the object when it was
created.

Incidentally, because messages traveling on different paths may encounter different de-
lays, it is quite possible that the two messages will arrive at and be printed by the console
object in the reverse order from what you might expect.

In this example we happen to have passed the intended destination to each new relay
object by “installing” it initially as an persistent variable, and passed the message we wanted
the object to relay in the message to it. One could equally have written the program to

install the message and to send the destination. One could also avoid using any persistent
variables at all in the relay, as in:

relay() :: [(where,what) send (what) to where]

[(console) send(console,"Hello World") to relay()]

or one could include both the destination and what to print as persistent variables:

relay(where,what) :: [() send (what) to where]

[(console) send () to relay(comsole,"Hello World")]

Persistent variables hold state information that persists from one message and object execu-
tion to the next. In all of the examples above the object “self-destructs” when the execution
reaches the close square bracket, so the objects do not require persistent variables.

One way to define an object so that it is persistent is to start its description with
*[instead of [. This form specifies that the description replaces itself with itself when the
corresponding right square bracket is encountered. If one wanted to be stingy in the number
of relay objects created , one could define a persistent relay object, create only one instance,
and use it over and over:

relay(where) :: *[(message) send (message) to where]

[(console)
let r = relay(console)
send ("Hello World") to r
send ("Goodbye Cruel World") to r

This example also introduces the let statement, which has the syntax:

(lety = let (variable name) = (expression)

The let statement is useful for establishing a placeholder for the value of an expression and
for introducing local, persistent variables into a description. Cantor variable names can
originate either from the persistent list, in which case the variables are global to the object,
or from the message list or a let statement inside either the current description or one of

7

the lexically enclosing descriptions. The value of the expression part of the let statement
of this example is the reference to the single relay object created. This reference is bound
to the variable r, which is used to specify the destination for both of the send statements
within the main object.

It happens that when this computation is completed, as indicated by there being no
object processing messages and no message left in the system to process, the instance of the
relay object still persists. Not to worry. The completion of the computation is detected by
the absence of messages, and more generally, such an object is automatically determined
to be “irrelevant” and is collected as “garbage” when no other object is able to send it a
message.

Another form for specifying a replacement description is expressed by nested descrip-
tions. For example, in this variation on the previous example:

noisy_relay(where)
*[(message) send (message, "odd") to where
[(message) send (message, "even") to where]

]

[(console)
let r = noisy_relay(console)
send (1) tor
send (2) tor
send (3) tor
]

the noisy._relay object appends a second element to the message list as it is relayed, indicating
whether it is an odd- or even-numbered message.

If you were now to start writing Cantor programs, you might well complain that Cantor
lacks iteration and procedure constructs. Iteration internal to an object would allow the
object to execute for an indefinite period, which is contrary to Cantor’s computational
model. Program behaviors corresponding to what appears in other programming notations
as iteration and procedures are in any case easily expressed in terms of Cantor’s message
sending and object creation mechanisms.

Let us start with idioms for iteration in Cantor. The following example program:

repeat_relay(where,what)::
[(i) if i>0
then send (what) to where
send (i-1) to repeat_relay(where,what)
fi

[(console) send (B) to repeat_relay(console,"Hello World")]

prints “Hello World” a number of times determined by the message sent by the main object,
five times in this case. The iteration is accomplished by repeat_relay objects that create the
necessary number of instances of repeat_relay objects. This program also introduces the if
statement, which has the syntax:

(iff => if (expression) then (statement)t { else (statement)® } fi

and has the conventional meaning.
It is more natural and efficient to make repeat_relay persistent, and have it send a message
to itself, rather than to create a chain of instances:

repeat_relay(where,what)
*[(i) if i>0 then send (what) to where

send (i-1) to self
£i

[(console) send (5) to repeat_relay(console,"Hello World")]

This basic idiom for iteration leaves an instance of the repeat_relay object after the iteration
is complete. However, one can explicitly override the Kleene star by using the (control)
construct exit, as in:

repeat_relay(where,what)::
*[(i) if i>0
then send (what) to where
send (i-1) to self
else exit
fi

[(console) send (5) to repeat_relay(console,"hello")]

Alternatively, one can define the repeat_relay object with no replacement and use the repeat
construct:

repeat_relay(where,what)
[(i) if i>0
then send (what) to where
send (i-1) to self
repeat
fi

[(console) send (5) to repeat_relay(console,"hello")]

These two programs have exactly the same behavior. The exit statement can be thought of
as overriding the *[...] of the description in which it is contained, and the repeat statement
the [...]. Using exit inside of a [...] is harmless, though aesthetically displeasing, likewise
for using repeat inside of a *[...].

The final group of examples of this section is meant to illustrate that in Cantor, just
as in other programming notations, one can compute the overused example of the factorial
function in numerous ways, either by a linear iterative process or by a linear recursive
process. Also, we will define the factorial object in each example such that it is invoked by a
consistent convention that is similar to the way in which functions are called in conventional
programming notations.

First, here is a recursive definition of a factorial object and a main object to “call” it:

factorial(reply, n)::
[O
if n<2
then send (1) to reply
else send () to factorial(self, n-1)
[(m) send (n*m) to reply]
fi

[(console) send () to factorial(console, 6)]

The occurrences of the (object name) factorial are concatenated with a (list) whose first
element is the object to which to send the answer, and whose remaining elements are similar
to the argument list of a function. Since all the information necessary to the computation
of the factorial is conveyed in this list, the message list is empty.

The definition of the factorial object follows almost directly from the recursive definition.
The use of a replacement description in the else clause serves to receive the message result of
the computation of (n —1)!. Factorial is a linear recursive function. It necessarily consumes
resources linear in its argument in building a stack of decreasing values of n. The stack
in this example is built from instances of the factorial object itself. If it seems that one is
carrying too much baggage with a stack of factorial objects, one can create a stack of more
elementary objects by factoring out the nested description of:

[(m) send (n*m) to reply]

into a separate object definition called mult. The instances of the object mult will keep
the stack values linked together, freeing the single instance of the factorial object on each
recursion, as in:

10

mult(reply, n)::[(m) send (n*m) to replyl

factorial(reply, n)::
[O
if n<2
then send (1) to reply
else reply := mult(reply,n)
n := n-1
send () to self
repeat
i
]

[(console) send () to factorial(console, 6)]

This example is the first to use assignment, which in Cantor has the conventional inter-
pretation. The iterative behavior of the factorial object builds a chain of mult objects with
decreasing values of x, the first with a reference to the object expecting the answer, and the
rest with reference to its immediate predecessor. When the iteration terminates the mult
objects generate the product. In order to generate the product as the decreasing values are
produced, one would need another variable, and would have converted this program to the
iterative version of computing the factorial function:

factorial(reply, n)::
[letm=1
send () to self
[() if n<2
then send (m) to reply
else m := m*n
n :=n-1
send () to self
repeat
fi
]
]

[(console) send () to factorial(console, 6)]

The additional variable m is introduced and initialized by the let statement. The nested
description does the actual work.

11

2.2 Expressing Recursive Functions in Cantor

The Cantor examples for the factorial function have demonstrated some of the ways
linear recursive functions can be written in Cantor. For an example of another type of
recursion, called tree recursion, consider the task of computing the n** Fibonacci number
by the well-known recursive formula:

fibo = 0
fiby = 1
fibp = fibp_1+ fiby o

A Cantor program to compute this recursive function is shown in Figure 2.2. The program
begins by creating a single instance of the fib object and then sends the new object the
message (console, 15). The Fibonacci function is a side-effect free (“pure”) function. In
keeping with this property, the Cantor version uses no persistent variables.

The fib object expects messages consisting of two components, a variable named caller,
which is expected to be a reference value, and n, the argument of the function. Once the
Fibonacci number for n has been computed, the answer is replied to caller.

If the value of n sent to fib is 0 or 1, then the value of n is replied to caller, otherwise the
recursive step must be taken. Initiating the recursive invocation is straightforward. Two
new fib objects are created and sent messages of n-1 and n-2. The question then arises
where the two reply values should be sent. Clearly sending the two reply values directly to
caller is incorrect because caller is expecting a single message containing the sum from the
two recursions.

The return from the recursion therefore consists of receiving the two reply values, sum-
ming them together, and sending the sum to caller. To accomplish this set of actions, a
third object, called adder, is introduced. The adder object is similar to the mult object used
for the factorial program except that it waits for two messages instead of one. The adder
object waits for the two reply values from the two fib objects, sums the two reply values,
and then sends the sum to caller. The reference value of the caller variable is passed from
the fib object to the adder object when fib creates the adder object.

The tree recursion formulation of the Fibonacci function generates two fib objects for
each message received unless the integer value contained in the message is 0 or 1. Thus
the program of Figure 2.2 generates a ridiculous number of objects. Due to the tremendous
concurrency generated, the program is arguably useful since it provides a simple way of
testing whether the runtime environment contains a concurrent machine or not.

A first improvement to the Fibonacci program would be to reduce the number of new
objects created by the fib object. One possible reduction would be to modify the fib object
shown in Figure 2.3. The description is made persistent and one of the two recursive message
is sent to self while the other is still sent to a new fib object.

By sending messages to self, the number of new objects created is appreciably reduced.
The use of the keyword exit to complement the asterisk in front of the description ensures
that all of the objects are eventually disposed of. This second version does not, however,
reduce the number of messages generated.

12

adder (caller) :: [(x) [(y) send (x + y) to caller]]

fib () :: [(caller, n)
ifn=0o0orn-=1
then send (n) to caller
else let a = adder(caller)
send (a, n-2) to £ib()
send (a, n-1) to fib()
£i]

[(console) send (console, 15) to fib()]

Figure 2.2: Fibonacci Program

adder(caller) :: [(x) [(y) send (x + y) to caller]]

fib () :: *[(caller, n)
ifn=0orn-=1
then send (n) to caller
exit
. else let a = adder(caller)

send (a, n-2) to self
send (a, n-1) to £ib()

£i]

[(console) send (comsole, 15) to fib()]

Figure 2.3: Fibonacci Program Using Less Objects

13

The Fibonacci programs of Figures 2.2 and 2.3 are poor concurrent formulations , because

work is often duplicated needlessly. To see this duplication, consider the first three recursion
levels of fib for n = 15:

fibiys = fibjs+ fibyy
fibiyy = fibyp + fibys
fibyz = fibyy + fiby,

Thus fib;3 is computed twice as is fib;;. This duplication of work repeats recursively,
terminating with fiby and fib; being computed 987 times.

There are several solutions to this problem including a simple linear time, constant space,
iterative solution for Fibonacci numbers. A solution that focuses not on the mathematical
properties of Fibonacci numbers but rather on the behavior of the recursion is to introduce
a “memo” function [1]. The idea is simply to maintain a table that maps values of n into the
corresponding n** Fibonacci number. Instead of having the fib object always send messages
to two new instances of fib objects, the requests for the two new values of n are sent to a
look-up table. If the values of n already exist in the table, the answers are replied to the
adder objects as before. If the request for n is stored in the table but not the answer, the
requests for the same value of n are chained together. Otherwise, the request is made into
a new table entry, a new fib object is created and the value of n is sent to the new object.

A program to build the table in conjunction with the Fibonacci function is shown in
Figure 2.4. The memo object is structured around the case construct, which is the alternate
form for the body of a description. Each memo object initially contains a value for n called
val in the persistent list of memo and a single requester, which is the caller from either a
fib object or the main object. Each memo object can accept two “types” of messages, either
a reply from a fib or adder object containing the value of the Fibonacci number for val,
or a request to compute the Fibonacci number of val. To distinguish the different types
of messages, the messages are “tagged” by the symbols “request” and “reply” respectively.
Symbols are one of the primitive values in Cantor, and are distinguished by a string of
characters enclosed in double quotes. The symbols of Cantor should not be confused with
the notion of strings as found in other languages. Symbols in Cantor are only programmer
defined constants that can be tested for equality.

The BNF description for the case construct is:

(case) => case ((variable name)) of (case entry)*
(case entry) => (selector) : (sequence)
(selector) == (integer) | {logical) | (symbol)

The case construct is a syntactic convenience for programming objects based upon message
types. The chief reason for the inclusion of the case construct is to facilitate the tagging
of messages, as for example in the memo object. The use of the tag provides a mechanism
to vary the interpretation of the contents of a messages based upon the value of the first
component of the message. The tag also serves the role of the “method” or “attribute”
selector used in object-oriented programming. The tag of the message is used to invoke an
attribute of an object by dispatching on the tag to one of the case entries. Each case entry
corresponds to a method of the object. The first variable of the message is the method
selector. The (selector) is enclosed in parentheses and follows the case keyword. The value
of (selector) must be either a symbol, integer, or logical. This value is used to select which

14

adder (caller) :: [(x) [(y) send ("reply", x + y) to caller]]

chain (item, next) :: [(answer) send (answer) to item
send (answer) to next]

memo {val, next, requesters) ::
*[case (cmd) of

"request" : (n, caller)
if n = val
then requesters := chain(caller, requesters)
else if next = "nil"
then next := memo(n,"nil",caller)

send (n, next) to £ib()
else send ("request", n,caller) to next
fi '
fi
"reply" : (result)
send (result) to requesters
*[(discard, n, caller)
if n = val
then send (result) to caller
else if next = "nil"
then next := memo(n,"nil",caller)
send (n, next) to fib()
else send ("request", n,caller) to next
fi
fi]

fid ()
[(n, table)
if (n=0) or (n = 1)
then send ("reply", n) to table
else let a = adder(table)
send ("request",n-1,a) to table

send ("request",n-2,a) to table
fi]

[(console) send (15, memo(15,"nil",console)) to £ib()]

Figure 2.4: Fibonacci Function with Look-Up Table

15

of the case entries that will be executed in response to the message. If none of the selectors
match the value of the first message variable, then the message is discarded. If a selector
matches the value of the first message variable, then the message list and sequence of
statements following the selector is executed. Thus the message list for the case construct
is separated into two parts. The first message variable is enclosed in parentheses following
the case keyword while the remainder of the message list follows the selector and has the
same syntax as the (sequence).

The case construct is analogous to the variant record as defined in the programming
language Pascal [8].

For the memo object, the case construct is used to distinguish the two types of commands
that can be sent to a memo object, either a request to compute a Fibonacci number or the
reply from an adder or fib object with the answer for the Fibonacci number of val. The first
component of a message accepted by a memo object is cmd. If cmd is equal to the symbol
“request”, then the remainder of the message is interpreted as a value of n to be computed
on, and a reference value identifying the object that should receive the result. For the case
of “request”, the value of n is compared to that of val. If they are equal then the reference
value of the message variable caller is enqueued by storing it as an acquaintance of a chain
object. If val is not equal to n, then the “request” message is forwarded to the next memo
object. If no next memo object exists, a new memo object is created along with a new fib
object to compute the value of the Fibonacci number for n.

If the value of cmd is “reply”, then the second message variable is the result of a previous
request. The value is kept in result and replied to all of the objects that have requested
an answer. Since the memo object expects a single “reply” message, all messages accepted
after the “reply” message must be “request” messages. The replacement description, once
a “reply” message has been accepted, is to check whether the request is for val. If yes then
the result is sent to caller; otherwise the request is forwarded to the next memo object as
before.

16

2.3 An Example Using a Vector

Cantor has no notion of aggregate data except of course for the Cantor object. Thus the
look-up table for the Fibonacci function was implemented as a linked list of memo objects.
As an example of using linked lists of objects for problems involving array indexing, consider
the task of calculating the inner product of two vectors A and B, written C = A- B. A
program to calculate the inner product of the two vectors A = [1,2,3] and B = [4,5,6] is
shown in in Figure 2.5.

The two vectors A and B are represented as linked lists of element objects. The element
objects are not created “dynamically” but rather by a series of let statements in the main
object. The first element object of each list has reference to the second element object, and
the second element has reference to the third. The semantics of Cantor permit this leniency
in evaluation only in a contiguous sequence of let statements and only when the values of
the expressions are references. A program fragment of the form:

let x=1y + 2
lety=x4+3

will yield unpredictable results because x and y cannot be reference values. Cantor’s le-
nient interpretation of the evaluation order for contiguous let statements permits objects to
possess mutual reference such as:

let x = f(y)

let y = f(x)
and also “self-loops” such as:

let x = f(x)

Aside from this new usage of the let statement, the interpretation of the program of Figure
2.5 is straightforward. To summarize, the cnode object is used to gather both the value and
next link of A; and B;. Vectors A and B are expected to be of equal length. If one of the
two next links is “nil”, then the product of the two values of the two elements is sent to
caller. The reader can check this sequence of events by setting the next link of Al and B1
both to “nil”. If the next link is not “nil”, then a new cnode and adder object are created.
The adder object is sent the product of the two values received from A; and B;, and the new
cnode object is programmed to reply to the adder object by setting its persistent variable
caller to the reference value of the adder object. The adder object is identical to the one
used in the Fibonacci examples.

A possible refinement to this program is shown in Figure 2.6. The product step of cnode
is factored out into a new object called mpyer. This new object is the same as adder except
that it computes a product instead of a sum. The definition of element is changed so that
the values are sent to the mpyer object and the next links are sent to the next cnode object.
The caller acquaintance of the mpyer object is set to the adder object, thereby performing
the multiply and add step of the inner product function outside of the cnode object.

The sending of two messages instead of one from the element object introduces con-
currency that was not exploited in the program of Figure 2.5. The product step for the

current index and the set-up for the next index are performed concurrently instead of being
performed sequentially by the cnode object.

17

element (val, next) :: [(c_next) send (val.next) to c_next]
adder (caller) :: [(x) [(y) send (x + y) to caller]]

cnode (caller)
[(v1, n1)
[(v2, n2)
if n1 = "nil" then send (vi*v2) to caller
else let a = adder(caller)
let ¢ = cnode(a)
send (vi*v2) to a
send (¢) to ni
send (c) to n2
fi
]
1

[(console)
let Al = element(1,A2) let A2
let B1 element(4,B2) let B2

element(2,A3) 1let A3 = element(3,"nil")
element(5,B3) let B3 = element(6,"nil")

let ¢ = cnode{console)
send (c) to Al
send (c) to B1

Figure 2.5: Inner Product Program

18

element (val, next) :: [(c_next,mpy)
send (next) to c_next
send (val) to mpy

1
adder (caller) :: [(x) [(y) send (x + y) to caller]]

mpyer (caller) :: [(x) [(y) send (x * y) to caller]]

cnode (caller)

[(n1)
[(n2)
if nl1 = "nil"
then send (0) to caller
else let a = adder(caller)
let m = mpyer(a)
let ¢ = cnode(a)
send (c,m) to ni
send (c,m) to n2
fi
]
1

[(console)
let Al
let B1

element(1,A2) 1let A2 = element(2,A3) let A3 = element(3,"nil")
element(4,B2) 1let B2 = element(5,B3) let B3 element(6,"nil")

let ¢ = cnode(console)
send (A1) to ¢
send (B1) to ¢

Figure 2.6: Inner Product with Multiply Object Program

19

2.4 Building Data Structures in Cantor

The preceding programming examples have only touched upon some of the approaches
for incorporating data structures into Cantor programs. Programs are often based upon
organizing objects in terms of stacks, tables, arrays, etc., and then customizing the ob-
Jects for the particular application, thereby blurring the distinction between the pure data
structure and its realization within a program. Therefore, to provide a starting point for
understanding the use of data structures in Cantor, four common data structures, stacks,
queues, vectors, and two-dimensional arrays, are examined in their purest form.

2.4.1 Stacks

The object definition shown in Figure 2.7 behaves as an element for a stack. Two
assumptions about the stack object are that each object is created containing a value and
secondly, that there will never be more pops than pushes. The stack object has two “modes”
of operation. The “full” mode occurs when the stack object contains a value for the stack.
For each “push” message received, the object checks the value of the next variable. If the
value of next is “nil”, then a new stack object is created containing the current stack value,
and the value contained in the “push” message is assigned as the content of the current
stack element. If the value of next is a reference, then a “push” message is sent to next
with an argument of content. The value contained in the received “push” message is then
assigned to content.

When the first “pop” message is received, the stack object sends the value of content
to caller and then enters the “empty” mode of operation. All “pop” messages received by
a stack object that is in the empty mode are forwarded to next. If next contains the value
“nil”, then the symbol “empty” is sent to caller. The symbol “empty” will only be sent if
more “pop” messages are sent to the stack than “push” messages.

When a “push” message is received by a stack object that is in the empty mode, the
content of the message is assigned to content and the stack object returns to the full mode.

This formulation for a stack has two attractive properties. Multiple messages can be
sent to the stack without having to synchronize with reply messages reply. For example,
a series of “push” messages followed by a series of “pop” messages will behave correctly,
independent of message delays.

A second property is that an interleaved series of “pop” and “push” messages will only
involve the “top of stack” object. The first “pop” message will put the top of stack object
into the empty mode. The following “push” message will place the top of stack object back
into the full mode. For this formulation, the number of objects involved in a push or pop
operation is limited to the difference between the number of “push” and “pop” messages
processed by the stack.

One possible refinement to the stack object is to have the objects self-destruct if their
value is popped and the value of next is “nil”. The difficulty with this refinement is that the
top of stack object has to be treated differently; otherwise the entire stack will self-destruct.

20

stack (content, next)
*[case (cmd) of

"push" : (val)
if next = "nil"
then next := stack(content, "nil")
else send ("push",content) to next
fi
content := val

"pop" : -(caller)
send (content) to caller
*[case (cmd) of

"push" : (val)
content := val
exit

"pop" : (caller)
if next = "nil"

then send ("empty") to caller
else send ("pop", caller) to next
fi

Figure 2.7: Stack Object

21

2.4.2 Queues

Figure 2.8 depicts one formulation for expressing a queue in Cantor. The two operations
performed on the queue object are advance queue front, returning the value at the head of
the queue, and insert a new value at the tail of the queue. Although the stack example
required only a single “top of stack” reference to be maintained by another object, queues
require two references, one for the head of the queue and the other for the tail.

The queue is partitioned into two object definitions: queue_cell and queue_master. The
queue cell objects are used to form a linked list of the values stored in the queue. The
queue_master objéct is used to control access to the linked list of queue_cell objects. The
queue permits concurrent writes into the queue by sending the queue_master object multiple
“insert” messages. However, the queue should have only a single reader, i.e. the environment
guarantees that only one object at a time will send “advance” messages to the queue_master
object, and that the reply to the “advance” message is processed before another “advance”
can be sent.

The outer case construct of the queue_master object waits for either type of message.
If an "advance” message arrives first, then the next message received must be an “nsert”
message. For this case, no queue_cell objects are needed. The queue_master object waits for
the “insert” message and then replies the value of the “insert” message to the object that
sent the “advance” message.

Once the number of “insert” messages received exceeds the number of “advance” mes-
sages received, a queue_cell object is allocated and assigned to the local variables hd and
tl. The inner case construct is then used to process messages. The receipt of an “insert”
message results in a new queue_cell object. This new object is to be added at the tail of the
current queue, a “link” message containing the value of the new tail object is sent to the old
tail object and the variable tl is assigned the reference value of the new queue_cell object.

When a “advance” message is received, the value at the front of the queue must be
retrieved and the front of the queue advanced. Fetching the value at the front of the queue
and the value for the new queue front is accomplished by sending a “get” message to hd.
From this point, two types of messages can be received: additional “insert” messages and
the reply from hd. A third case construct is used to handle the two message types. The
case for “insert” performs as before. The case for “hd reply” sends the value at the queue
front to the object that sent the “advance” message, and assigns the new queue front value
to hd. The receipt of the “hd reply” messages returns control to the second case construct.
If the value of the head of the queue is “nil”, then the queue is empty and control returns
to the outer case construct.

22

queune_cell(value, next)
*[case (cmd) of

"link" : (new_next) next := new_next
"get" : (caller) send ("hd reply",next,value) to caller
exit
]
queue_master()
*[case (cmd) of
"advance" : (caller) % wait for "insert" message
[(discard, v) send (v) to caller]
"insert" : (v)
let hd = queue_cell(v,"nil")
let t1 = hd
*[case (cmd) of
*insert" : (v)
let nt = queue_cell(v,"nil") % new tail
send ("link",nt) to tl1
tl := nt
"advance" : (caller)
send ("get",self) to hd
[case (cmd) of
"insert" : (v)
let nt = queue_cell(v,"nil")
send ("link",nt) to tl
tl := nt
repeat
"hd reply" : (new_head,v)
send (v) to caller
hd := new_head
1
if hd = "nil" then exit fi
]
1

Figure 2.8: Queue Object

23

2.4.3 Vectors

For the inner product programs of Figures 2.5 and 2.6, vectors were defined by linking
together a bunch of element objects using let statements. A more general solution is to
define a vector object as a function of its length, and then to instantiate and access the
elements of the vector via indexed put and get messages. A vector object defined this way
is shown in Figure 2.9. Initially the vector object waits for a message containing the limits
of the vector: low and high. If low is less than high a vector object is created with the
new reference value assigned to the local variable next. The new vector object is sent an
initialize message with low incremented by one. The vector object then accepts “put” and
“get” messages after entering the case description. Both message types contain a variable
named index to compute the desired offset into the vector, starting with the first vector
object. For both message types, the offset computation is performed by decrementing the
index message variable for each vector object that the message passes through. When the
value of index is decremented to 1, the receiving vector object performs the corresponding
put or get operation.

For a vector of length N, if the indices sent to the vector are random, then the average
number of messages sent per indexing operation is %’- This number is excessive unless
the vector can be used in a pipelined fashion, which effectively defeats the purpose of the
random access mode. A second formulation for the vector object is shown in Figure 2.10.
The elements of the vector are organized as a binary tree instead of a linear list. The
maximum number of messages to access an element of the vector is logy, N. This worst case
number is a tremendous improvement over the average case number for the linear list.

The interface to the vector object is unchanged from the linear version. Initially a
message is sent to the vector object containing the lower and upper limits of the vector.
The vector object calculates its index value and stores the result in the local variable me.
If low is less than me, then a left sub-tree is created. Likewise a right sub-tree is created if
high is greater than me.

After the initialization message has been processed, the vector object awaits “put” and
“get” messages. Both message types perform the indexing operation by comparing the value
of the index received to the value of me. If index equals me, the put or get operation is
performed. Otherwise the “put” or “get” message is relayed to left if index is less than me,
or is relayed to right if index is greater than me.

To reduce the access time further, the vector object could be implemented as a custom
object. Custom objects use information about the runtime environment for the program
that is outside the scope of Cantor. The vector object is a prime candidate for customization
when there are large amounts of contiguous storage for objects. The interface to the vector
object is identical to the interface used for the linear and tree versions. However, the
indexing operation is reduced to a single send by replacing the linear or tree search with an
address calculation into storage.

24

vector (content)
[(low,high)
let next = "nil"
if low < high
then next := vector(content)
send (low+1,high) to next
fi
*[case (cmd) of
"put" : (index, val)
if index = 1
then content := val
else send ("put", index - 1, val) to next
fi
"get" : (index, caller)
if index = 1
then send (content) to caller
else send ("get",index - 1, caller) to next
fi

Figure 2.9: Vector Object Organized as a Linear Linked List

25

vector (content)
[(low,high)
let me = low + (high-low+l) / 2
let left = "nil"
let right = "nil"
if low < me
then left := vector(content)
send (low, me-1) to left

fi
if high > me
then right := vector(content)
send (me+1, high) to right
i

*[case (cmd) of
"put" : (index, val)
if index < me
then send ("put",index, val) to left
else if index > me
then send ("put",index, val) to right
else content := val
fi
£fi
"get" : (index, caller)
if index < me
then send ("get",index,caller) to left
else if index > me
then send("get",index,caller) to right
else send (content) to caller
fi
fi

Figure 2.10: Vector Object Organized as a Binary Tree

26

2.4.4 Two-Dimensional Arrays

A straightforward method for generating two-dimensional arrays is to augment the vector
object of Figure 2.9. The strategy is to consider an array of size M rows by N columns as a
vector of length M N. Each array object would have two more persistent variables than the
vector object. One variable would provide the next row link for each element of the array
and the other would be a back link for propagating messages right to left.

Messages would flow in both directions along the doubly linked chain of objects. Mes-
sages would travel left to right as before to link the column elements of one row and then
then thread contiguous rows together in a serpentine fashion. Messages flowing back along
the chain, i.e. right to left, would be used to set the next row link for each element by
propagating a reference value for an array object from right to left N elements. Excluding
the first row, a message sent back N places will line up with the array object that is in the
row directly above the originating sender.

There are two drawbacks to this approach. The first is that the array is created in a
completely sequential fashion. The doubly linked chain of M N objects is created in a linear
fashion and then the next row links are set by propagating messages backwards along the
chain. The second drawback is that, excluding the first and last row, each array object
originates one back flowing message, but also forwards N — 1 more messages, the total
number of messages is therefore O(MN?).

A more concurrent solution that requires fewer messages is shown in Figure 2.11. The
overall strategy is to progressively build the array along a diagonal that starts with the
upper left hand corner of the array (m = 1,n = 1). Excluding the first row and column,
and last row and column, each object waits for two messages, a “diag” message from the
array object that is one row above and one column to the right of the receiving object
(m—1,n+1), and an “up” message from the array object in the row directly beneath the
receiving object. Each object will receive exactly one “diag” and one “u p" message but their
arrival order is unknown. Thus if a “diag” message arrives first, the object will wait for a
“up” message and likewise if an “up” message arrives first.

For each pair of messages received, the object will create a new array object for the next
column and send an “up” message to the object which is one row above and one column over
from the current object. The array object uses the content of the “up” message to set the
next_row persistent variable and uses the content of the “diag” message as the destination
for the “up” message.

After the next_row persistent variable is set via an “up” message and the next_col per-
sistent variable is set by creating a new array object, a “diag” message is sent to the array
object of next_row with a one row up and one column over value of next_col. Care has to
be exercised for “edges” of the array because array objects in the first row and last column
will never receive “diag” messages, and array objects in the last row will never receive “up”
messages.

To detect when the array has been completely built, for every row completed an empty
message is sent to caller. Thus caller is expected to keep a count of the number of rows in
the array and also a count of the number of replies it has received from the array. When
the number of replies received equals n, caller may send the array new messages. For this
example, only two operations have been defined on the array, “put i j” and “get i j*. These
two message types are similar to the messages types defined for the vector object. For the
put and get messages to reach their destination, they are first sent along the first column,
decrementing the message variable i until the destination row is reached and are then sent

27

along the destination row, decrementing the message variable j until the destination array
element is reached.

Like the linear vector object, if the indices sent to the array are random, then the
average number of messages sent per index operation is M—"ﬂ This number can be reduced
by building the matrix out of the tree vector objects. For thls scheme, the matrix is placed
into row or column major form. For the row major form, the matrix contains a binary tree
of M vector objects. Each vector object has reference to its left and right sub- -tree, and also
a reference to the column tree for that object. Once the tree has been traversed to find
the correct row index, the column tree is traversed to find the correct column index. The
column major form is identical except that the roles of row and column are interchanged.
The maximum number of sends for this scheme for any pair of indices is logs MN.

28

array (max_m, max_n, next_col, next_row, content)
*#[[case (cmd) of

"diag" : (m, n, up_and_over, caller)
if n < max_n
then next_col := array(max_m, max_n, "nil", "nil", 0.0)
ifm>1

then send ("up", m-1, n+1, next_col, caller)
to up_and_over
fi
else send () to caller
fi
if m < max_m
then if n > 1§
then [(emd, m, n, down_link, caller)
next_row := down_link

]

else next_row := array(max_m, max_n, "nil", "nil", 0)
fi
if n < max_n
then send ("diag",m+1,n,next_col,caller) to next_row
fi
fi
"up® : (m, n, down_link, caller)
next_row := down_link
if n < max_n
then next_col := array (max_m, max_n, "nil", "nil", 0)
send ("diag", m+l, n, next_col,caller) to next_row
else send () to caller
fi
if m > 1 and n < max_n
then [(cmd, m, n, up_and_over, caller)
send ("up",m-1,n+1,next_col,caller) to up_and_over
]

else if m = 1 and n = max_n then send () to caller fi

fi

1
[case (cmd) of
"put i j" : (i, j, val)

ifi>1
then send ("set i j", i-1, j, val) to next_row
else if j > 1 then send ("put i j", i, j-1, val) to next_col

else content := val
fi
fi
"get 1 j" : (i, j, caller)
if i > 1

then send ("get i j", i-1, j, caller) to mext_row
else if j > 1 then send ("get i j", i, j-1, caller) to mext_col
else send (content) to caller
fi
fi
11

Figure 2.11: Two-Dimensional Array Object
29

30

Chapter 3

Three Programming Examples

Writing concurrent programs using the objects of Cantor usually requires a considerable
amount of forethought about the concurrent formulation for the program. The objective
for the concurrent formulation phase of program writing is to determine how the various
concurrent objects are to be organized and how the various components for the “state” of
the computation are to be partitioned among the objects.

The process of developing good concurrent formulations, whether by intuition, tech-
nique, or a combination of both, is fundamental to writing programs. To serve as a starting
point for writing useful programs in Cantor, this section examines in detail three medium
size programs. The discussions that follow place emphasis upon the concurrent formula-
tions, trusting that the reader has a working knowledge of the individual mechanisms of
Cantor. The historical origin for these examples is the XCPL report [3]; their inclusion here
is a virtual wholesale rip-off from the XCPL report.

3.1 Generating Prime Numbers by Sieving

The programming task is to generate all the prime numbers up to a predefined limit by
constructing a “sieve” that filters out all the non-prime numbers. The technique is devoid
of tantalizing number-theoretic tricks but uses a simple and elegant concurrent formulation.
The program is partitioned into two parts: the sieve and the number generator that feeds the
sieve. The requirements of the number generator are that it must emit a stream of integers
such that the stream contains all the prime numbers and that the integers are emitted in
strictly increasing order. The simplest such stream would be the natural numbers starting
with 2.

The sieve can be described by a linear chain of objects with each object containing
a single prime number. Each sieve object receives potential primes numbers to test for
divisibility. If the test number divides evenly, it is discarded; otherwise the test number is
relatively prime and is sent to the next sieve element. Whenever a test number reaches the
end of the sieve, the number must be a prime and is made into a new sieve object at the
end of the chain.

The number generator could be a simple counter and emit the natural numbers starting
with 2. Naturally this would be wasteful, for all even numbers except for 2 are not prime.
A first improvement would be to omit all multiples of two, i.e. emit only the odd numbers.
Further improvements would be to omit multiples of 2,3,5,7,11, etc.. A number generator
of this type is called a “wheel” [6]. The wheel is composed of an “addendum” and “spokes”.
The addendum is the product of the prime numbers from 2 up to some finite limit. The

31

spokes are the integers relatively prime to the addendum. The wheel operates by maintain-
ing an accumulator that is a multiple of the addendum. The accumulator is added to each
spoke and then sent to the sieve for primality testing. After each spoke has sent a number
to the sieve, the accumulator is advanced to the next multiple of the addendum.

For example, consider the addendum of: 1-2-3 = 6. This addendum would result in a
two spoke wheel of 1 and 5, and would generate the sequence:

0+1,0+5,6+1,6+512+1,1245,18+1,18+5,...=1,5,7,11,13,17,19, 23...

Every integer in this sequence is relatively prime to 2 and 3, and the first non-prime gener-

ated is 25. The number of spokes for a wheel is determined by calculating Euler’s Function
for the addendum.

3.1.1 Wheel Driven Primes Sieve

The program of Figure 3.1 uses the combination of a predetermined object structure and
a computed object structure. The wheel is the predetermined object structure, consisting
of 8 spokes initialized with the values of 1,7,11,13,17,19,23, and 29. The addendum for the
wheel has the value: 2-3-5 = 30. The computed object structure is the sieve. A snapshot
of the object graph during the execution of this program is shown in Figure 3.2. In this
graph, circles represent objects and the edges represent the references between objects. The
program of Figure 3.1 requires only three types of objects.

The sieve objects make up the linear chain of objects that comprise the sieve. The
wheel is comprised of 8 spoke objects and a single idler object. The 8 spoke objects and
the idler object are linked together inside of the main object as a ring. Initially a single
message is inserted into the ring at spoke3. Thereafter a message will circulate through
the 9 objects that comprise the wheel. For each complete revolution each spoke object will
insert a test number into the sieve. The idler object will then advance the current value
of the accumulator by the value of the addendum. This cycling action will continue until
the accumulator reaches 10,000 at which point the wheel is shut down followed by the sieve
emptying out.

The sieve object performs as described previously. Each sieve object independently sends
prime number messages to console, so prime numbers may arrive at the external display
object in non-ascending order.

By making some basic assumptions about the environment of the objects, the concurrent
behavior of the primes program can be measured quantitatively as a function of time.
For each time step or “sweep”, every object that has one or more messages enqueued is
considered “active”. The set of active objects establishes the number of messages that can
be processed concurrently. The size of the active object set is the concurrency index (&)
for the sweep. The assumption to be made is that all active objects process a single message
in the same amount of time. This time interval is the sweep.

As a first approximation, the assumption that all active objects process messages within
the same time quantum is acceptable because iteration is not allowed inside of the objects
and because the “bulk” of the concurrent objects are created from the same object definition.
Differences in execution time per message received are limited to the number of different
object definitions and data dependencies.

A second assumption is that message delivery is instantaneous.

From these two assumptions, the rules for running a program are to allow each of the
active objects to process a single message, tally the total number of objects and the number

32

spoke (v,hub.next) ::
40
send (v+k) to hub
send (k) to next

]

sieve (v, next, output) :
«[(p)
if (p mod v)) 0)
then if next = nil
then send (p) to output
next := sieve(p. “nil”, output)
else send (p) to next

fi
]

idler (delta, next) :: #[(k) if (k (10000) then send (delta+k) to next fi]

[(console)
let hub = sieve (7."nil" .console)
let spokel = spoke(1,hub,spoke2) let spoke2 = spoke(7.hub,spoke3)
let spoke3 = spoke(11,hub,spoke4) let spoke4 = spoke(13.hub,spoke5)
let spoke5 = spoke(17.hub.spoke6) let spoke6 = spoke(19.hub,spoke7)
let spoke7 = spoke(23.hub,spoke8) let spoke8 = spoke(29,hub.idler1)
let idler1 = idler(30,spoke1)
send (0) to spoke3

]

Figure 3.1: Wheel Driven Prime Sieve

of active objects, and then iterate. Figures 3.3 and 3.4 show the number of objects and
concurrency index as a function of the sweep count for the wheel driven prime sieve. The
program used to make the two graphs is identical to the program of Figure 3.1 except
that the message send to output in the sieve object was removed. The number of sweeps
necessary to compute all primes less than 10,000 is 4,241. This is the absolute minimum,
assuming that every opportunity for concurrency is exploited. The number of objects grows
at a steady, monotonically increasing rate, reflecting the growth of the sieve.

The concurrency index also grows steadily since concurrent behavior is achieved by the
stages of the sieve working concurrently. The concurrency index continues to increase until
the number generator that is input to the sieve is shut down. The sieve then begins to

empty out with the concurrency index monotonically decreasing.

33

Figure 3.2: Object Graph for Prime’s Sieve

34

NDe 0 o—oQ

1400
1200
1000
800
600
400
200

350
300
250
200
150
100

50

Object Count for Wheel Driven Prime Sieve

Il L 1 1

1000 2000 3000 4000 5000

sweep

Figure 3.3: Object Count for Wheel Driven Prime Sieve

Concurrency Index for Wheel Driven Prime Sieve

] 1 L |

1000 2000 3000 4000 5000

sweep

Figure 3.4: Concurrency Index for Wheel Driven Prime Sieve

35

3.1.2 Demand Driven Primes Sieve

A major problem with the program of Figure 3.1 is that the production of messages
flowing into the sieve is not regulated to the consumption rate of the sieve. Therefore a
message bottleneck may form between the spokes of the wheel and hub. A solution to the
bottleneck between the sieve and the wheel that does not change the basic character of the
algorithm is to alter the message production so that the “supply” of test numbers never
exceeds the “demand” for test numbers. Stated slightly differently, prime numbers will be
“pulled” out from the end of the sieve instead of having test numbers “pushed” into the
first stage of the sieve.

A program that uses the new strategy is shown in Figure 3.5. Each sieve object employs
the case construct to distinguish between two types of incoming messages, “request” and
“answer”. The sieve objects are created containing a prime number p and are initially
waiting for a number N to test for primality. For each “answer” message received, the sieve
object will immediately request another test number and then test the number received for
primality. If the number is relatively prime, the number is sent to next which is initially set
to the value of the external object console. A new sieve ohject is then created and assigned
to the next acquaintance variable.

After the next acquaintance variable contains a reference value to a new sieve object, the
original sieve object can be in one of two modes, either the object contains a test number
that is relatively prime and is waiting for a “request” message from the next sieve element,
or has received a “request” message from the next sieve element and is waiting for a test
number from the previous stage of the sieve. Notice that the sieve object sends an initial
“request” message to self to compensate for the missing “request” message from the new
sieve object.

The overall strategy for the sieve objects is to internally “buffer” one number that is
relatively prime to the number stored inside the sieve object. When a “request” message
is received, the sieve object will repeatedly send “request” messages to the previous sieve
element until a relatively prime number is received. The number is then sent onto the next
stage of the sieve. If the “answer” message is received first and the number N received is
relatively prime, the object waits for the “request” message and then sends the saved value
of N to the next stage of the sieve.

The first sieve object is connected to a new object called axle which serves as the interface
between the wheel and the sieve. Each “request” message received by the axle object will
cause the wheel to advance one notch. Thus the speed at which the wheel “rotates” is
directly controlled by how fast the first sieve object can accept test numbers, and indirectly
by the rate at which prime numbers are stored into new sieve objects at the end of the sieve.

The plots for the object count and concurrency index are shown in Figures 3.6 and 3.7.
Like the plots for the wheel driven version, the message send to console inside of sieve was
removed. The number of sweeps to completion is 12,269, which is about a factor of 3 greater
than the wheel driven version. The overall shape of the two object graphs and concurrency
index graphs are the same. The concurrency index graph for the demand driven primes
sieve is “bumpier” than the wheel driven version. The factor of 3 difference in number of
sweeps and the bumpiness is due to the handshaking between the stages of the sieve. For
the wheel driven version, each transmission of an integer between sieve objects requires 1
message to be processed. For the demand driven version, 3 messages are processed: request
integer, answer integer, and accept reply.

36

sieve (mext, back, p)
*[(cmd, N)
send ("request") to back
if Nmod p=0
then send ("request") to back
else send (N) to next
next := sieve(next, self, N)
send ("request") to self
*[case (cmd) of
"request" : () *[(cmd, N)
send ("request") to back
if N mod p <> 0
then send ("answer", N) to next
exit
£i]
"answer" : (N)
if Nmod p=0
then send ("request") to back
else let N_save = N
[(cmd) send ("answer", N_save) to next]
send ("request") to back
fi]
fi]

axle (next_spoke, start, acc)
*[(discard)
send (acc) to mext_spoke
[(v, k, ns) send ("answer", v + k) to start
acc := k
next_spoke := ns]]

spoke (v, hub, mext) :: *[(k) send (v, k, next) to hub]

idler (delta, next) ::
*[(k) if (k < 10000) then send (delta+k) to next fi]

[(console)
let hub = axle(spoke3, sieve(console, hub, 7), 0)

let spokel = spoke(1,hub,spoke2) 1let spoke2 = spoke(7,hub,spoke3)
let spoke3 = spoke(11,hub,spoke4) let spoke4 = spoke(13,hub,spoke5)
let spokeb = spoke(17,hub,spoke6) let spoke6 = spoke(19,hub,spoke?)
let spoke7 = spoke(23,hub,spoke8) let spoke8 = spoke(29,hub,idlerl)

let idlerl = idler(30,spokel)
send ("request") to hub]

Figure 3.5: Demand Driven Prime Sieve

37

nern o=

Object Count for Demand Driven Prime Sieve
1400

1200
1000
800
600
400
200

0 i 1 1 i 1 1
0 2000 4000 6000 8000 10000 14000

sweep

Figure 3.6: Object Count for Demand Driven Prime Sieve

Concurrency Index for Demand Driven Prime Sieve
250

200

150 +

100

50

0 L 1 1 11 1 1 1
0 2000 4000 6000 8000 10000 14000

sweep

Figure 3.7: Concurrency Index for Demand Driven Prime Sieve

38

3.2 The Eight Queens Problem

The Eight Queens problem is one of the showcase problems often cited in the literature
of computer programming. The task is to place eight queen pieces on an 8x8 chessboard
so that no queen is in jeopardy of capture. The attack rule for the queen chess piece is
that any piece lying along the same row, column, or either diagonal may be captured. The
paradigm of “divide and conquer” is used to conduct a breadth-first search of the solution
space.

A solution that uses only a precomputed object structure is shown in Figure 3.8. Each
queen object represents one column of the chessboard. Since all solutions will have exactly
one queeen per column and row, the program could also have been organized as one object
per row. The queen objects are doubly linked together inside of the main object as a chain of
eight objects. Each queen object is assigned a column number as an acquaintance variable.
Both ends of the chain are terminated by a single instance of the border object.

A second message variable, called chessboard, has been included as part of the message
list for the main object. The queen objects are programmed to send their results to this
second external object instead of to console. The intent here is that the chessboard variable is
a reference value for an external graphic display, suitable for displaying both the chessboard
and the chess pieces in a visually appealing fashion.

A first solution is found by sending the queen object of column one a “move” message
with destination row number equal to 1. When the queen object of column one accepts the
“move” message, it will assign its acquaintance variable row to the value of the message
variable new_row. The queen object then checks to see if its column number is the final
column number. If the column number is less than eight, an “evade” message is sent to self
to start searching for a safe row number for the queen object in the column to the right of
the current queen object.

When the queen object accepts the “evade” message, it will check whether the test row
number is on the board. If the test row number is eight or less, a “capture” message is
sent to self to test whether the test row and column numbers for the queen object of the
next column can be captured by the current queen object. If the projected coordinates are
safe, then the “capture” message is sent to the queen object in the column to the left of the
current object. This action will continue recursively until either the test row and column
numbers cause a capture to occur, or the “capture” message reaches the border object.

If the test position causes a capture to occur, the queen object that initiated the search
for the new column is sent an “evade” message with the test row number incremented. If
the “capture” message reaches the border object, then the test row and column numbers are
safe from capture and the queen ohject corresponding to the test column number is sent a
“move” message with the test row number as the content of the message.

Whenever an “evade” message forces the test row number for the new column off the
board, the current configuration of queens will not produce a solution. The search then
needs to be retracted to searching for another safe position for the current column, instead
of the next column. This “backtracking” is accomplished by having the current queen object
send the queen object in the column to the left an “evade” message with a new test row
number for the current queen. The search for a safe position is then backed off one column,
and will continue backing off all the way back to the border object. If the border object ever
receives an “evade” message, then no solution exists.

If, however, a safe position is found for queen object of column eight, then a complete
solution has been found. The queen object of column eight will then send itself an “ack”

39

border (output)
*[case (cmd) of

"capture" : (test_col,test_row, tester, next)
send ("move", test_row) to next
"evade" : () send ("no solution") to output
"ack" : () send () to output
exit
]

queen (col, row , left, right, output)
*[case (cmd) of

"ack" : () send (col,row) to output
send ("ack") to left
exit

"move" : (new_row) Trow := new_row

if col = 8

then send ("ack") to self
else send ("evade", 1) to self
fi
"evade" : (test_row)
if test_row > 8
then send ("evade",row+l) to left

else send ("capture",col+l,test_row,self,right) to self

fi
"capture" : (test_col, test_row, tester, next)
if (row = test_row) or
((test_col - col) = (abs (test_row - row)))
then send ("evade",test_row+l) to tester

else send (“capture",test_col,test_row,tester,next) to left

i

[(console, chessboard)
let bb = border (chessboard)
let q1 = queen (1,1,bb,q2,chessboard)
let g2 = queen (2,1,q1,q3,chessboard)
let g3 = queen (3,1,q92,94,chessboard)
let q4 = queen (4,1,93,95,chessboard)
let g6 = queen (5.1.q4,q6,chessboard)
let g6 = queen (6,1,q5,q7,chessboard)
let q7 = queen (7,1,q6,98,chessboard)
let g8 = queen (8,1,q7,bb,chessboard)
send ("move",1) to qi

Figure 3.8: Eight Queens Program Organized by Columns

40

message. The response of a queen object to an “ack” message is to send the internal row
and column numbers to the reference value contained in output, which is always set to the
value of chessboard. The “ack” message is then forwarded to the queen object in the column
to the left and will propagate from right to left until an “ack” message reaches the border
object.

An interesting property of this program is that from the first solution all subsequent
solutions can be found. These additional solutions are extracted simply by sending column
eight “evade” messages until the border objects sends a “no solution” message.

An unfortunate property of this program is that it is sequential. A small improvement
would be to change the strategy of the capture check so that the new coordinates for
a queen’s position are sent to all of the columns to the left of the current queen object
concurrently, instead of performing the capture check one column at a time. The larger
problem however stems from the conservative nature regarding the processing of the “evade”
messages. Only a single new column position is investigated rather than checking all of the
possible new positions.

The program shown in Figure 3.9 performs a concurrent search for the set of possibly
safe new row and column numbers. The doubly linked list of main is replaced by a tree
whose depth and breadth can only be determined by running the program. The tree is
constructed by sending a “start” message to the top object which will create eight queen
objects, one for each row of the chessboard with column number always initialized to one.
The queen objects are sent “check” messages which replace the “evade” messages. When a
queen object receives a “check” message, it will check whether the eighth column has been
reached. If so a “print” message is sent up the tree in the same fashion as was used for
the sequential solution. Otherwise eight “capture” messages are sent to self to perform the
concurrent search for the next column

The response to a “capture” message has been modified so that when a capture occurs,
the “capture” message is discarded, thus ending the search. If the “capture” message reaches
the top, then the queen object that originated the search is sent an “add queen” message.
When the “add queen” message is received, a new queen object is generated and the entire
process continues in a recursive fashion.

For this concurrent solution no backtracking is necessary. New positions are investigated
concurrently and whenever a capture occurs, the unsafe coordinates are discarded. If the
“capture” messages reaches top, then a new leaf node is added to the tree. Thus the strategy
has shifted from using sequential search with backtracking to a concurrent breadth-first
search.

There are two problems with this solution. First, detection of when the program has ter-
minated is not self-evident. For the sequential program, a single solution was expected and
when that solution arrived, the program was known to have completed. For the concurrent
version, the number of expected solutions is unknown, and determining when the program
has become quiescent cannot be determined solely from the program output. This problem
is not too serious, for termination can be determined by the Cantor runtime system.

A more serious problem with this solution is that the individual coordinates for queen
game pieces are sent to chessboard in an interleaved fashion.

41

top (output)
*[case (cmd) of
"start" : (i) send ("check", 1) to queen (self, i, 1, output)
if i < 8 then send ("start",i+1) to self fi

"capture" : (test_col, test_row, checker)
send ("add queen", test_row) to checker

"print" : () send () to output
]

queen (parent, row, col, output)
*[case (cmd) of
"print" : () send (row,col) to output
send ("print") to parent

"add queen" : (ok_row) send ("check",1) to queen(self,ok_row,col+l, output)

"check" : (test_row)
if col < 8 then send ("capture", col+l, test_row, self) to self
else send("print") to self
fi
if test_row < 8 then send ("check", test_row+l) to self fi

"capture" : (test_col, test_row, checker)
if (row = test_row) or
((test_col - col) = (abs (test_row - row)))
then repeat
else send ("capture",test_col, test_row, checker) to parent
fi

[(console, chessboard) send ("start",1) to top(console)]

Figure 3.9: Concurrent Eight Queens Program

42

top (linker)
*[case (cmd) of
"start" : (i) send ("check", 1) to queen (self, i, 1)
if i < 8 then send ("start",i+l) to self fi

"capture" : (test_col, test_row, checker)
send ("add queen", test_row) to checker
q

"print" : (first, last) send (first,last) to linker
]

spooler (console,i)

*[(row, col, caller) send (col,row) to console
i = (i + 1) mod 8
if (i = 0) then send () to console fi
send ("advance",self) to caller

link (output)
[(first, tail) send ("print",output) to first
*[(first , last) send ("enlink",first,output) to tail

tail := last
]

chain (next, row, col)
*[case (ecmd) of

"enlink" : (first, printer) next := first
"print" : (printer) send (row,col,self) to printer
"advance" : (caller)

if next = "nil"

then [(cmd,first,printer) send ("print",printer) to first]
else send ("print", caller) to next
fi exit

Figure 3.10: Output Control for Concurrent Eight Queens Program

43

queen (parent, row, col)
*[case (cmd) of
"print" : (down, bottom)
send ("print",chain(down,row,col),bottom) to parent

"add queen" : (ok_row) send ("check",1) to queen(self,ok_row,col+1)

"check" : (test_row)
if col < 8 then send ("capture", col+l, test_row, self) to self
else let b = chain("nil",row,col)
send("print",b,b) to parent
exit
£i
if test_row < 8 then send ("check", test_row+l) to self fi

"capture" : (test_col, test_row, checker)
if (row = test_row) or
((test_col - col) = (abs (test_row - row)))
then repeat
else send ("capture",test_col, test_row, checker) to parent
fi
]

[(console, chessboard)
send ("start",1) to top (link(spooler(chessboard,0)))
1

Figure 3.11: Concurrent Eight Queens Program with Output Control

44

Clearly a mixture of the two strategies is desired, i.e. a concurrent search followed
by a meaningful serialization of the results as they are sent to chessboard. One possible
composition of the two strategies is shown in Figures 3.10 and 3.11. The search for solutions
is unchanged; however, the printing of a solution is handled substantially differently. Three
new objects definitions are introduced in Figure 8.10, chain, spool and link. The chain object
constructs a linear list of eight queen coordinates to represent a single solution. The spool
object feeds the lists of solutions to the chessboard display. The link object serializes the
lists as they exit the root of the tree by linking them together into longer lists.

The construction of the linear lists replaces the sending of the solution coordinate pairs
directly to chessboard. When a “check” message is received and the column number is eight,
a print list is started by creating a chain object and sending a “print” message up the tree
as before. As the print list grows from the leaf node of the tree to the root node, both the
head and tail of the list are passed along as part of the “print” message. When the “print”
message reaches the top object, it is sent to the link object, which immediately prints the
first list it has received by sending the first element of the print list a “print” message with
a reference to the spool object.

When the chain object receives a “print” message, the row and column numbers internal
to the chain object are sent to the spool object. The spool object will send the coordinates
to the chessboard and then send an “advance” message back to the originating chain object.
To separate the display of the solutions, the spool object is coded to send an empty message
to the chessboard after the eight coordinates of a complete solution have been sent to
chessboard.

When the chain object receives an “advance” message, one of two conditions may hold,
either the print list has been emptied, or there is another chain object following the current
chain object. If the end of the list has been reached, the object waits for a new “enlink”
message from the link object and then restarts the “print” and “advance” message cycle.
Otherwise the “print” and “advance” message cycle starts immediately on the following
chain object.

The relative speeds between the chain, spool, link, and queen objects is therefore incon-
sequential. If the solutions are sent to the chessboard much faster than they are produced,
then the chain object which was the last to be displayed will wait for an “enlink” message.
If the answers are produced faster than they can be sent to the chessboard, then they are
spliced together to form a list of solutions. The behavior of the “print” and “advance”
message cycle is comparable to the protocols used in self-timed system design.

The plots for the object count and concurrency index are shown in Figures 3.12 and 3.13.
The source program for these plots is the same as the program in Figure 3.10. The output
control of Figure 3.11 was simplified only to count and print the number of solutions. The
reason for this change was that the printing phase of the solutions is completely sequential.

The concurrency index for the concurrent queens program reaches a peak value of 38.
Intuitively the program should have significantly more concurrency since the program is
building an 8-way tree of depth eight. Figure 3.14 shows the message load (ML), which is
defined as the number of outstanding messages divided by the number of active objects per
sweep. This quantity should always be greater than or equal to one. For the two versions
of the primes sieve, the number was always one and hence the message load graphs were
omitted. The concurrent eight queens program however has a high message load, with a
peak value of about 20 after excluding the final sweeps where messages sent to the console
object form a bottleneck.

45

Object Count for Concurrent Eight Queens

2500
2000
o)
b 1500
J
e
c
t 1000
s
500
0 | 1 | 1
0 500 1000 1500 2000 2500
sweep
Figure 3.12: Object Count for Concurrent Eight Queens
Concurrency Index for Concurrent Eight Queens
40
30l AR W TR
¢ 20 |
10 H
0 | |] |
0 500 1000 1500 2000 2500
sweep

Figure 3.13: Concurrency Index for Concurrent Eight Queens

46

r<

80

60

40

20

Message Load for Concurrent Eight Queens

a4 i 1] 1

0 500 1000 1500 2000 2500

sweep

Figure 3.14: Message Load for Concurrent Eight Queens

47

High message load values indicate that there is a bottleneck somewhere in the program.
Careful examination of the object definition for queen shows that a bottleneck in message
flow could occur in the “add queen” case where a new queen is added by creating a new
queen object whose parent link is set to self. This use of self minimizes the number of queen
objects but requires all of the sibling queen objects to send “capture” messages to the single
parent. If self was replaced by queen(parent, self, col), then each new queen object would
have a separate parent queen object which to send “capture” messages.

The revised program for the concurrent eight queens is shown in Figure 3.15. The plots
for object count, concurrency index, and message load are shown in Figures 3.16 through
3.18.

The revised program generates about twice as many objects, but the concurrency index
is about a factor of 7 greater and the number of sweeps to completion is about a factor 7
smaller. The area under the two concurrency index curves is about the same, indicating
that the total number of messages that have to be processed for the two programs is also
approximately equal. More concurrency is exploited in the revised program by parceling
out the work load among more objects. The message load graph of Figure 3.18 for the
revised program supports this conclusion.

48

counter(output, n) :: *[() send (n) to output
n:=n+1

]

top (output)
*[case (cmd) of
"start" : (i) send ("check", 1) to queen (top(output), i, 1, output)
if i < 8 then send ("start",i+1) to self fi

"capture" : (test_col, test_row, checker)
send ("add queen", test_row) to checker

]

queen (parent, row, col, output)
*[case (cmd) of
"add queen" : (ok_row)
send ("check",1) to queen(queen(parent, row, col, output),
ok_row,col+l, output)

"check" : (test_row)
if col < 8
then send ("capture“, col+1l, test_row, self) to self
if test_row < 8
then send ("check", test_row+l) to self

fi
else send () to output
exit
fi
"capture" : (test_col, test_row, checker)

if (row = test_row) or
((test_col - col) = (abs (test_row - row)))
then repeat
else send ("capture",test_col, test_row, checker) to parent
£i
]

[(console) send ("start",1) to top(counter(console,1),1)]

Figure 3.15: Revised Concurrent Eight Queens Program

49

ner 0= Q

Object Count for Revised Concurrent Eight Queens
5000

4000 -

3000

2000

1000

0 50 100 150 200 250 300 350 400

sweep

Figure 3.16: Object Count for Revised Concurrent Eight Queens

Concurrency Index for Revised Concurrent Eight Queens
300

250

200

150

100

50

0 50 100 150 200 250 300 350 400

sweep

Figure 3.17: Concurrency Index for Revised Concurrent Eight Queens

50

=

60

50

30

20

10

Message Load for Revised Concurrent Eight Queens

50 100 150 200 250 300 350 400

sweep

Figure 3.18: Message Load for Revised Concurrent Eight Queens

51

3.3 Gaussian Elimination

Numerical analysis problems present a special challenge when programmed in Cantor.
Programs used in numerical analysis are often formulated in terms of matrices and described
as sequences of actions performed on the indexed elements of the matrices. Such a represen-
tation provides a reasonable compromise between the domain of mathematical objects used
by numerical analysts and the representation of matrices as a segment of contiguous storage
in sequential computers. Cantor does not provide for contiguous arrays of storage elements
as one of the basic types of values. Instead, matrices are built out of Cantor objects as was
described in Chapter 2 for the vector and array objects.

A direct translation of a sequential program’s manipulation of a matrix is possible in
Cantor using the array object. All indexing operations performed on matrices are mapped
into the corresponding put and get messages for the array object along with the necessary
synchronization. Although the put and get messages are sufficient for manipulating matri-
ces, better use of a matrix can often be achieved by providing the matrix with the capability
to react to many different kinds of messages. As an example of this approach, consider the
problem of solving a set of m linear equations with n unknowns using the technique of Gaus-
sian elimination applied to an m by n matrix. To solve for the unknowns, the matrix is
first placed into reduced row-echelon form and then back substitution is used to output the
computed values for the unknowns. The program shown in Figures 3.19 and 3.20 performs
the row reduction phase with pivoting included to minimize round-off error. The algorithm
consists of the following steps with j ranging from 1 to m:

1. Find pivot row for column j.

2. Move pivot row to the top of the matrix.

3. Adjust pivot row so that value in column j is 1.

4. Add multiples of the top row to the rows beneath it so column j is zero.
5. Cover top row, increment 5 and repeat.

A cursory examination of this program indicates that the total number of arithmetic op-
erations performed is O(m?n). Step 4 can be performed concurrently, reducing the time
to completion by a factor of O(m). Thus the total time to completion would be O(mn)
instead of O(m?n) as for a sequential computer.

The program of Figures 3.19 and 3.20 organizes the Gaussian elimination algorithm as
operations that can be performed on the individual elements of the matrix (Figure 3.19)
and as objects that represent the first four steps listed above (Figure 3.20). The main object
is used to both define the matrix and send the gauss object a message containing a reference
to the matrix object element in the upper left corner of the matrix. The matrix could have
been constructed dynamically as was done for the array object of Chapter 2, however to
keep the example simple, it was defined statically inside of main.

The gauss object accepts a reference to the upper left corner element and checks whether
there are any equations or unknowns left. If no equations or unknowns are remaining, the
original upper left corner of the matrix is sent a “print” message to output the matrix
in reduced row-echelon form. Otherwise, the first four steps of the above algorithm are
accomplished as the composition of the three objects: compare, exchange, and subtract.
The compare object finds the pivot row for the current column. The exchange object swaps

52

element (next_row, next_col, content)
*[case (cmd) of
"print" : (output, back)
send (content) to output
if back = "nil" then back := next_row fi
if next_col = "nil"
then send () to output
if back <> "nil"
then send ("print",output,"nil") to back
fi
else send ("print",output,back) to next_col
fi
"find piv" : (caller)
send(content, self) to caller
if next_row <> "nil"
then send ("find piv", caller) to mext_row

fi
"awap" : (max_val, swap_row, reply_to)
content := content / max_val
send ("set 1st", content, self, max_val, reply._to) to swap_row
"set 1st" : (mew_val, swap_row, max_val, reply_to)
send ("set 2nd", content, next_col, max_val, reply_to) to swap_row
content := new_val
"set 2nd" : (pew_val, swap_row, max_val, reply_to)
content := mew_val

send () to reply_to
if next_col <> "nil"
then send ("swap", max_val, swap_row, reply_to) to mext_col
fi
"set mf" : (next_top_col, done)
if next_top_col = self
then if next_row <> "pil"
then send ("set mf", next_col, done) to next_row
fi
send () to dome
else send ("mpy", content, next_col, done) to next_top_col
if next_row <> "nil"
then send ("set mf", next_top_col, done) to next_row
fi
content := 0.0
fi
"mpy" : (mf, add_col, done)
send ("sub", mf, content, next_col, done) to add_col

"sub" : (mf, val, next_top_col, done)
content := content - mf * val
if next_top_col = "nil"

then send () to done
else send ("mpy", mf, next_col, done) to next_top_col

fi
"next col" : (next_gauss) send ("mext row", next_gauss) to next_col
"next row" : (next_gauss) send (next_row) to next_gauss

]

Figure 3.19: Matrix Element for Gaussian Elimination Program
53

subtract (matrix, count, gauss, output)

*[O

count :

count - 1

if count = O then send ("next col",gauss) to matrix fi

]

exchange (matrix, count, sub)

*[O

count
if count = O then send ("set mf", matrix, sub) to matrix fi

]

count - 1

compare (max_val, max_row, count, matrix, exch)
*[(test_val, test_row)

count := count - 1
if (max_row = "nil") or ((abs max_val) < (abs test_val))
then max_val := test_val
max_row := test_row
fi

if count = O then send ("swap", max_val, matrix, exch) to max_row fi

]

gauss (orig_matrix, m, n, output) ::

*[(matrix)

if (m=0) or (n = 1)
then send ("print",output,"nil") to orig_matrix
else let sub = subtract(matrix, m, self, output)

let exch = exchange(matrix, n, sub)

let cmp = compare (0.0, "nil", m, matrix, exch)

send ("find piv",cmp) to matrix

m:=m-1

n:=n-1
fi

1
[(console)

let m =4 % m rows by
let n =5 % n columns
let mil = element(m21, mi2, 3.0) 1let m21 = element(m31, m22, 1.0)
let mi12 = element(m22, m13, 1.0) 1let m22 = element(m32, m23, 1.0)
let m13 = element(m23, mi4, 7.0) let m23 = element(m33, m24, 4.0)
let m14 = element(m24, mi5, 9.0) let m24 = element(m34, m25, 4.0)
let mi15 = element(m25, "nil", 4.0) 1let m25 = element(m35, "nil", 7.0)
let m31 = element(m41i, m32, -1.0) 1let mdl = element("nil", m42, -2.0)
let m32 = element(m42, m33, 0.0) let mi2 = element("nil", m43, -1.0)
let m33 = element(m43, m34, -2.0) let mi3 = element("nil", mdd, -4.0)
let m34 = element(m4d, m35, -3.0) let mdd = element("nil", mib, -6.0)
let m35 = element(m45, "nil", 0.0) let m4b = element("nil", "nil", 6.0)

send (m11) to gauss(mii, m, n, console)

Figure 3.20: Gaussian Elimination Program
54

the pivot row with the current top row and also does step 3 as part of the swap operation.
The subtract object performs step 4.

After the gauss object builds the three additional objects, it sends a “find piv’ message
to the upper left corner of the matrix with a reference value of the compare object as the
contents of the message. The gauss object then decrements the number of rows and columns
in the matrix. The next message the gauss object accepts will be the upper left hand corner
matrix object for the matrix that is one row and column smaller than the current matrix.

When the matrix accepts the “find piv" message, it sends the contents of the matrix
element to the compare object and forwards the message along the first column of the
matrix. The compare object keeps track of the matrix object for the upper left corner of
the matrix and of the matrix object for the row whose element in the first column is the
largest. When the compare object has received m messages, all of the rows of the matrix
have sent a value for column 1. The compare object then sends a “swap” message to the
row with the maximum element value and an argument of the first row of the matrix. The
“swap” message causes a sequence of “set 1st” and “set 2nd” messages to thread (cross-
stitch) their way along the two rows, exchanging the elements on a column by column basis
and adjusting the contents of the pivot row as described in step 3. For every stitch there is
a message sent to the exchange object. After the exchange object has received n messages
from the stitch operation, the upper left corner of the matrix is sent a “set mf” message to
set the multiply factor for the first column.

When the element object of the matrix receives the “set mf" message, it will send a
“mpy” message to self to start the multiply and subtract step for the current row with the
pivot row. A check is first made though to make sure the multiply and subtract step is not
applied to the pivot row. The element object will also forward the “message” to the next
row of the matrix, thereby allowing the multiply and add steps to proceed concurrently for
all the rows. The “mpy” and “sub” messages work in a fashion similar to the cross-stitching
of the messages used to accomplish the row exchange step.

For each completed multiply and subtract step performed on a row, a message is sent
to the subtract object. After the subtract object has received m completion messages, the
next iteration of the algorithm is started by first computing a new upper left corner element
object for the matrix and then sending the reference value for the new corner element to
the gauss object. The corner element is computed by sending the current corner element a
“next col” message. The “next col” messages will cause the element object to send a “next
row” message to the next column of the matrix, which in turn will send the reference value
for the next row of the matrix to the gauss object.

The plots for the object count and concurrency index are shown in Figures 3.21 and 3.22.
To make the plots more interesting and readable, the number of equations was increased
from 4 to 64 and the printing phase of the program was eliminated. The object count is
not interesting, the number of objects grows to approximately 4096, i.e. a 64 by 64 array of
element objects, and remains at this level for the duration of the program.

The concurrency index is quite interesting. For the find pivot, move pivot row, and
adjust pivot row steps, there is no concurrency. For the add multiples of top row to rows
beneath top row, the concurrency index is equal to the number of rows. By the iterative
nature of the program, as the matrix becomes one row and one column smaller, the Concur-
rency Index decreases by one. Likewise the interval between the concurrent “phases” is also
decreasing by 1. Therefore as the computation progresses, the concurrency steadily and
monotonically decreases and the interval between concurrent actions also decreases steadily
and monotonically.

55

ner o 0= Q

Object Count for Gaussian Elimination
5000

4000 r

3000 r

2000 |

1000 |

0 J] 1 I I I ! |
0 2000 6000 10000 14000

sweep

Figure 3.21: Object Count for Gaussian Elimination (N = 64)

Concurrency Index for Gaussian Elimination
70

60 -

40 n
30 H

10

> [UDLUUULU

0 2000 6000 10000 14000

il

1 L ! 1

sweep

Figure 3.22: Concurrency Index for Gaussian Elimination (N = 64)

56

Chapter 4

The Cantor Programming Environment

This section documents the tools currently available for developing Cantor programs
for both concurrent and sequential computers. These tools consist of a compiler, code
generator, various interpreters, and a library of example programs including all the Cantor
programs mentioned in this report.

The following explanations of the “nuts and bolts” for using the Cantor tools presumes
the use of the Berkeley Unix operating system as well as access to the cosmic environment
[9] for executing Cantor programs on a concurrent computer.

4.1 Compiling and Code Generation

The Cantor compiler is called cfe and is invoked by typing:
cfe prog

where prog.can is the name of the Cantor source text. The file extension “.can” is added
to the file name input to cfe. As the compiler compiles each object definition, the name
of the object is printed on standard output. The last object name to be printed is always
“main”. This name is reserved by the compiler for the main object and should never be
used by the program writer. Error messages from the compiler are sent to standard output
and are fairly informative. At least they are better than cc.

After a program has successfully compiled, the output file prog. Imf is written on the
same directory where prog.can was found. The .Imf extension is an abbreviation for
“intermediate format”. The .Imf file is used for both future optimization programs and for
immediate code generation. To generate code suitable for execution by the current bevy
of Cantor interpreters, the .Inf file has to be processed by the code generation program
called cgen. The cgen program is invoked by typing:

cgen prog

cgen will automatically append the . Imf file extension. The output file written by cgen is
prog.cg3. The .cg3 file extension signifies that the third generation code generator format
is the current format in use.

4.2 Executing Programs on a Sequential Computer

The sequential interpreter is called csr and can be installed on any computer that sup-
ports a C compiler. The interpreter requires a .cg3 file from the code generation program

57

and is invoked by typing:
csr prog

As before, the correct file extension is added by the program. All output from csr is sent
to standard output.

There are two “instrumented” versions of csr called dsr and tsr. The interpreter
dsr is a non-interactive debugger that steps through the execution of each object. The
display of an executing object consists of the definition name for the object, its reference
value, the list of persistent variables for the object, and the list of message values for the
object. Each new object created and new message sent as a result of executing the object is
also displayed. The interpreter tsr maintains frequency counts for the various intermediate
format instructions used during the execution of a program. The table of instruction counts
is written to standard output when the program terminates. The table is of interest to the
program writer since quantities such as the number of arithmetic instructions (ALU) can
be compared with the number of message passing operations (SEND).

4.3 Executing Programs on a Concurrent Computer

Cantor programs can be executed concurrently on either the Caltech Cosmic Cubes or
the Intel iPSC [7]. Essentially the interpreter is separated into two parts called csr_host
and csr_node. The program csr_host is the only program the programmer needs to know
about. The csr host program will handle all arbitration for allocating a cube, distributing
the Cantor program, and handling all the output from the cube. The cosmic environment
must be present for csr_host to function. More information about the cosmic environment
can be found in a “The C Programmer’s Guide to the Cosmic Cube” [9)].

The csr_host program can be invoked the same way as csr, but two optional parameters
are also available. The command syntax is:

csr host filename [cube dimension] [slack]

The optional parameter [cube dimension] allows the person running the Cantor program
to dial in a desired size for the cube. For highly concurrent Cantor programs, the bigger the
cube size, the faster the program will run, though the likelyhood of successfully allocating
a cube decreases with increasing size in a space sharing environment. The default cube
size is 3. The parameter [slack] determines the number of messages each node can have
outstanding in the message system. The minimum slack is 1, else a program would not run.
Performance increases dramatically when the slack is increased from 1 to 2, with diminishing
returns thereafter. For many programs slack is not an issue. For some computations such
as the concurrent Eight Queen’s program of Chapter 3, too much slack can overload the
message system of the concurrent computer. The default slack is 5. An example of a
complete invocation for csr_host is:

csr host prog 6 10

This invocation would be interpreted as: execute the program prog on a 6-cube with slack
set to 10.

58

4.4 Program Termination and Timing

Program termination is detected when all internal message queues become empty. For
all of the programs used in the report, the quiescent state is when there are no messages
remaining in the program. The empty message queue condition is easy to detect for the
sequential interpreters since there is nominally only one message queue. Once the mes-
sage queue becomes empty, the interpreter program will exit normally. The concurrent
interpreters employ an algorithm by Dijkstra and Scholten [5] to detect when all of the
message queues inside the cube have become empty and when all of the node interpreters
have become idle. After the cube has signalled the csr_host program, via node 0, that
the computation has terminated, the csr_host program will terminate all node processes,
release the cube, and then exit normally.

Both the concurrent and sequential interpreters keep track of the time interval between
the acceptance of the first Cantor message and when all of the message queues have become
empty. For the concurrent interpreters, the time interval is between when node 0 receives its
very first message from csr_host and when node 0 signals csr_host that the computation
has finished. Thus the time measured is the elapsed time for executing the Cantor program
without considering the time spent in setting up the Cantor program, e.g. loading the
programs and initializing the heaps. The elapsed time is written to standard output upon
normal termination. The time units are seconds and the resolution varies with machines.
For the Cosmic Cubes the resolution is 2ms while for the iPSC and VAXes it is 16ms.
Resolution for SUN’s varies with CPU.

4.5 Error Reporting

Runtime errors can occur either from exhausting physical resources such as heap space
or object name tables, or from programming errors that the compiler was unable to detect,
most notably type mismatch. For example, an object definition such as:

sum (time) :: [(x.y) send (x+y) to time]

cannot always be checked for proper type usage when the program is compiled. For example,
if x or y was a reference value, a runtime error would resuls.

Whenever a runtime error occurs, the name of the object definition that caused the
error is sent to standard output along with a brief message about the cause of the error.
The following summary is a partial list of the possible runtime error messages followed by
a short explanation of what the cause of the error might be:

Predicate of ‘if’' must be type Boolean, not type ..

The expression part of the if statement was evaluated and did not yield a logical (Boolean)
value. Check the if statements inside the name of the object definition specified in the error
message.

Type incompatibility in ALU instruction.

An attempt was made to evaluate an arithmetic or logical expression but the operands
of the expression were not of compatible types. The following is a table of the allowable
application of operators to data types:

59

operators data types
= ((any,any)
s ¥, /[(int,int) (real,real) (int,real)
{,), (=,)=, | (int,int) (real,real)
and, or, xor | (bool,bool) (int,int)

not (bool) (int)
mod (int,int)
abs (int) (real)

Heap space exhausted.

The storage local to a node was exhausted. A node will run out of storage if there are
either too many messages or too many objects. Many times such problems can be solved

by changing the message flow strategy, for example, as in the prime’s sieve programs of
Chapter 3.

An attempt was made to execute a deallocated object.

A message was sent to an object that self-destructed. Fortunately the object identification
number was not recycled before the bad message arrived; otherwise this error would affect
the new object. Often this problem arises by forgetting to put an asterisk in front of a
description, i.e. *[...] versus [...].

Object table exhausted.

Either too many objects were created from a single node or the program requires more
objects than the system can assign names to. The first case often results from bad load
balancing, not directly the programmer’s fault, but often can be fixed by redistributing the
task of object creation over more objects in a more uniform fashion.

4.6 External Objects

At present only two external objects exist for Cantor: console and chessboard. Any
message sent to console will be displayed prefixed by the string “console>”on the same
device that is running the interpreter.

The chessboard object exists only for the concurrent interpreter csr_host when executed
on a SUN workstation in the Caltech C.S. Department. The program chess_host must
be started immediately after the csr host program begins. The chess_host program
attempts to enter the cosmic environment as a second host program. If the program is
started before csr_ host, it will fail to enter the cosmic environment and terminate under
an error condition. For best results, chess host should be run in a separate window,
preferably a graphictool instead of a shelltool. The protocol for displaying a chessboard
configuration is to send eight coordinate pairs followed by an empty message to chessboard.
The chessboard display will hold the configuration until a new configuration is accepted.
Every configuration will be displayed for at least 5 seconds.

60

Chapter 5

Synopsis

This chapter provides a summary of the Cantor syntax. This chapter can be used as a
quick reference for comprehending Cantor programs.

5.1 Names

All names used in Cantor programs begin with an alphabetic character followed by zero
or more alphanumeric characters from the following set:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789

Names are delimited by either blank space or an “end of line” character. All alphabetic
characters are converted to lower case. Names are used to identify variables and object
definitions but some names are “reserved” by Cantor. The following is a list of names that
are special to Cantor and should not be used by the programmer.

send to if then else fi
let case of exit repeat become
or xor and not mod abs

self true false

The comment character for Cantor is percent sign (%). Whenever a percent sign occurs, all
characters between the percent sign and the “end of line” character are ignored.

5.2 Data Types

Integer 32-bit integer number between —2147483648...2147483647 inclusively.

Real 32-bit (single precision) floating point number. Accuracy of mantissa and integral are
machine dependent. The format for real numbers is an optional minus sign, followed
by a string of one or more digits, followed by a decimal point, and concluded by a
second string of zero or more digits.

Symbol String of alphanumeric characters enclosed between double quotes. A symbol
may include any printable character including blank spaces. Symbols are compiled
as constants. The only operation defined on symbols is equality testing. Examples:
“Hello”, “Hello from Cantor”, “Hee-Yuck”, “Hee Yuck”.

61

Logical Binary or Boolean value, textually denoted as true or false.

Reference Uniquely identifies a Cantor object. The only operation defined on references is
equality testing. References are generated either by the keyword self or by creating
new objects using the following syntax: (object name) (list). A list is delimited by
matching parentheses and contains a sequence of zero or more expressions that are
separated by commas.

5.3 Expressions

Expressions are evaluated from left to right based upon the follow precedence structure
for the arithmetic and logical operators.

not abs - (highest — unary)
* / mod (highest — binary)
+ -

= 0 () =)=

and

or Xxor (lowest)

All operators may not be applied to all data types. The following table expresses the com-
patibilities between data types and operators.

operators data types
= { (any,any)
s = %, [(int,int) (real,real) (int,real)

{,), {(=,)=, | (int,int) (real,real)
and, or, xor | (bool,bool) (int,int)

not (bool) (int)
mod (int,int)
abs (int) (real)

5.4 Statements (Commands)

send (list) to destination

Send a message to the object whose reference is the value of the expression destination.
list is a sequence of expressions that are separated by commas. Each expression of list is
evaluated and made into a component of the message.

if predicate then truepart else falsepart
The expression predicate is evaluated to yield a logical value, else a runtime error occurs.
If the value of predicate is true then the statements contained in truepart are executed. If

the value of predicate is false, then the statements contained in falsepart are executed. The
keyword else and the statements in falsepart are optional for the if statement.

62

let letname = expression

letname is created as a temporary variable inside the current description. ezpression is
evaluated and the resulting value is assigned to letname. If expression evaluates to a new
object reference, the reference value is assigned to letname before ezpression is completely
evaluated. Thus letname may be used inside of ezpression. Furthermore, letname may be
used anywhere within the contiguous block of let statements where it is defined.

varname := expression

varname is the name of either an acquaintance or message variable. ezpression is evaluated
and the resulting value is assigned to varname.

exit

Processing of the current message is terminated and the current description for processing
messages is exited. If the exit command occurs in the outermost description, the object will
self-destruct.

repeat

Processing of the current message is terminated and the current description will be reused
for processing the next message.

become other

Processing of the current message is terminated. The current object is destroyed and all
future messages are automatically forwarded to other. The expression other must produce
a reference value.

[(messagelist) sequence]

Processing of the current message is terminated. The object will use messagelist and se-
quence to process the next message. messagelist is a list of variable names, separated by
commas, that is used to identify the contents of the next message received. sequence is a
sequence of statements to be executed when the message arrives. If an asterisk () is placed
in front of [, the description will be continually reused for each message received; otherwise
the description will be used only once.

[case (dispatch) of
select] : (messagelist) sequence
select? : (messagelist) sequence

selectN: (messagelist) sequence

]

Processing of the current message is terminated. The next message received will be pro-
cessed using the case description. The first component of the next message received is
assigned to the message variable dispatch and is compared with select? through selectN,
which must be symbol, integer, or logical constants. If a match is found, the correspond-
ing messagelist is used to identify the rest of the message contents and the corresponding
sequence is used to process the message. If an asterisk () is placed immediately in front of
[, the case description will be continually reused for each message received; otherwise the
case description will be executed only once.

63

5.5 Object Definitions

A program is a collection of object definitions followed by a single description for the
main object. An object definition has the following syntax:

{object name) (acquaintance list) : : (description)

(acquaintance list) is a list of variables names, separated by commas and enclosed in paren-
theses. The acquaintance list defines the persistent variables for the object. The various
forms of (description) are described in Section 5.4.

64

Bibliography

[1] H. Abelson and G.J. Sussman, Structure and Interpretation of Computer
Programs, The MIT Press, Cambridge, Mass., 1985.

[2] G.A. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Artificial Intelligence Laboratory, Technical Report 844,
June 1985.

[8] W.C. Athas, XCPL: An Experimental Concurrent Programming Language,
Dept. of Computer Science, California Institute of Technology, Technical
Report 5196, Dec. 1986.

[4] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall Inc., Englewood
Cliffs, N.J., 1976.

[5] E.W. Dijkstra and C.S. Scholten, Termination Detection for Diffusing Com-

putations, Philips Research Laboratories, EWD687, Eindhoven, The Neth-
erlands, Oct. 1978.

[6] R.K. Guy, How to Factor a Number, Proceedings of the Fifth Manitoba
Conference on Numerical Mathematics, Utilitas Mathematics Publishing
Inc., Winnipeg, Oct. 1975.

[7] Intel Scientific Computers, iPSC User’s Guide, Order No. 175455-001, 15201
N.W. Greenbrier Parkway, Beaverton, Oregon, Aug. 1985.

[8] K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag,
New York, 1974.

[9] W-K. Su, R. Faucette and C.L. Seitz, The C Programmer’s Guide to the
Cosmic Cube, Dept. of Computer Science, California Institute of Technol-
ogy, Technical Report 5203, Sept. 1985.

65

